Transgenic mouse lines subdivide medial vestibular nucleus neurons into discrete, neurochemically distinct populations.

نویسندگان

  • Martha W Bagnall
  • Renna J Stevens
  • Sascha du Lac
چکیده

The identification of neuron types within circuits is fundamental to understanding their relevance to behavior. In the vestibular nuclei, several classes of neurons have been defined in vivo on the basis of their activity during behavior, but it is unclear how those types correspond to neurons identified in slice preparations. By targeting recordings to neurons labeled in transgenic mouse lines, this study reveals that the continuous distribution of intrinsic parameters observed in medial vestibular nucleus (MVN) neurons can be neatly subdivided into two populations of neurons, one of which is GABAergic and the other of which is exclusively glycinergic or glutamatergic. In slice recordings, GABAergic neurons labeled in the EGFP (enhanced green fluorescent protein)-expressing inhibitory neuron (GIN) line displayed lower maximum firing rates (<250 Hz) than glycinergic and glutamatergic neurons labeled in the yellow fluorescent protein-16 (YFP-16) line (up to 500 Hz). In contrast to cortical and hippocampal interneurons, GABAergic MVN neurons exhibited wider action potentials than glutamatergic (and glycinergic) neurons. Responses to current injection differed between the neurons labeled in the two lines, with GIN neurons modulating their firing rates over a smaller input range, adapting less during steady depolarization, and exhibiting less rebound firing than YFP-16 neurons. These results provide a scheme for robust classification of unidentified MVN neurons by their physiological properties. Finally, dye labeling in slices shows that both GABAergic and glycinergic neurons project to the contralateral vestibular nuclei, indicating that commissural inhibition is accomplished through at least two processing streams with differential input and output properties.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transgenic mouse lines subdivide external segment of the globus pallidus (GPe) neurons and reveal distinct GPe output pathways.

Cell-type diversity in the brain enables the assembly of complex neural circuits, whose organization and patterns of activity give rise to brain function. However, the identification of distinct neuronal populations within a given brain region is often complicated by a lack of objective criteria to distinguish one neuronal population from another. In the external segment of the globus pallidus ...

متن کامل

Nicotinic acetylcholine receptor-mediated responses in medial vestibular and prepositus hypoglossi nuclei neurons showing distinct neurotransmitter phenotypes.

Cholinergic transmission in both the medial vestibular nucleus (MVN) and prepositus hypoglossi nucleus (PHN) plays an important role in horizontal eye movements. We previously demonstrated that the current responses mediated via nicotinic acetylcholine receptors (nAChRs) were larger than those mediated via muscarinic acetylcholine receptors (mAChRs) in cholinergic MVN and PHN neurons that proje...

متن کامل

Neuronal classification and marker gene identification via single-cell expression profiling of brainstem vestibular neurons subserving cerebellar learning.

Identification of marker genes expressed in specific cell types is essential for the genetic dissection of neural circuits. Here we report a new strategy for classifying heterogeneous populations of neurons into functionally distinct types and for identifying associated marker genes. Quantitative single-cell expression profiling of genes related to neurotransmitters and ion channels enables fun...

متن کامل

Similar properties of transient, persistent, and resurgent Na currents in GABAergic and non-GABAergic vestibular nucleus neurons.

Sodium currents in fast firing neurons are tuned to support sustained firing rates >50-60 Hz. This is typically accomplished with fast channel kinetics and the ability to minimize the accumulation of Na channels into inactivated states. Neurons in the medial vestibular nuclei (MVN) can fire at exceptionally high rates, but their Na currents have never been characterized. In this study, Na curre...

متن کامل

Multiple types of cerebellar target neurons and their circuitry in the vestibulo-ocular reflex.

The cerebellum influences behavior and cognition exclusively via Purkinje cell synapses onto neurons in the deep cerebellar and vestibular nuclei. In contrast with the rich information available about the organization of the cerebellar cortex and its synaptic inputs, relatively little is known about microcircuitry postsynaptic to Purkinje cells. Here we examined the cell types and microcircuits...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 27 9  شماره 

صفحات  -

تاریخ انتشار 2007